Somaclonal selection for enhanced resistance to *Spongospora* root infection and studies on zoospore release

Mark Balendres
PhD Student

Assoc. Prof. Calum Wilson
Dr. Robert Tegg
Dr. David Nichols
Supervisors

2nd International Powdery Scab Workshop | Pretoria, South Africa | July 29 – August 1, 2014
Outline

- Background
- Objective and Methodologies
- Preliminary Results
- Research Directions
- Acknowledgment
...susceptibility to root infection should be assessed as well – *Merz and Falloon 2009*

...high root susceptibility are likely to be a particular risk factor in potato production – *Merz and Falloon 2009*

Potato breeders should focus more attention on powdery scab resistance – *Merz 2008*
Breeding for Resistance

- Conventional – Hybridization and selection
- Genetic Engineering (Recombinant DNA Technology)
- Biotechnological Methods (*In vitro* Selection and Somaclonal Variation)
The regeneration and screening of watercress somaclones for resistance to *Spongospora subterranea* f. sp. *nasturtii* and measurement of somaclonal variation

J. R. Claxton¹, D. L. Arnold², J. M. Clarkson & D. Blakesley
School of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK ¹present address: A. L. Tozer Institute of Plant Breeding, Biosciences, University of Reading, Reading, Berkshire, RG6 6AD, UK; ²Faculty of Veterinary Medicine, University of Edinburgh, Royal (Dick) School of Veterinary Studies, Edinburgh, United Kingdom

Received 23 April 2014

Genetics and Resistance

Stable and Extreme Resistance to Common Scab of Potato Obtained Through Somatic Cell Selection

Calum R. Wilson, Robert S. Tegg, Annabel J. Wilson, Gregory A. Luckman, Alieta Eyles, Zi Qing Yuan, Leon H. Hingston, and Anthony J. Conner

First, second, third, fourth, sixth, and seventh authors: Tasmanian Institute of Agricultural Research (TIAR), University of Tasmania, New Town Research Laboratories, Hobart, Tasmania, 7008. Fifth author: University of Edinburgh, UK. Private Bag 27, University of Tehran, Iran.

Somaclonal selection in potato for resistance to common scab provides concurrent resistance to powdery scab

R. S. Tegg, T. Thangavel, H. Aminian and C. R. Wilson

¹New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St Johns’ Avenue, Hobart, Tas., 7008, Australia; and ²Department of Plant Protection, University of Tehran, PO Box 113-4117, Tehran, Iran
Why Root Resistance?

- Roots – first in contact with the zoospores
- Phytochemicals released in the root encourage zoospore release and chemotaxis
- Root galls – sources of inoculum
- Growing evidence on the negative effect of root infection to the plant
Objective 1

To develop and select potato somaclones with enhanced resistance to root infection through cell selection technique.

- Retain the desired tuber characteristics
- Improved root system

cv. Russet Burbank

Selective Agents
- Thaxtomin
- Root Extract – *S. subterrannea* infected roots
Method: Cell Selection

Callus Induction -> Calli Shaken -> Challenge -> Callus Recovery

Rooting -> Shoot Induction -> Callus Regeneration

Hydroponics, Glasshouse and Field Screening

Wilson et al, 2010
Number of Calli Recovered

- No Selective Agent: 67
- Thaxtomin Challenged: 23
- Root Extract Challenged: 10

cv. Russet Burbank
Where to From Here?

- Assess rate of shoot induction from different selective agents
- Evaluate response of somaclones to *S. subterranea*
- Assess root traits/system of potato somaclones
Disease Development

- Stimulate Germination (zoospore release)
- Positive chemotaxis

Objective 2

- To evaluate the response of *S. subterranea* to potato root exudates.
 a. Zoospore Release
 b. Zoospore Chemotaxis

- To identify molecules/compounds in root exudates.
Methods

- **Zoospore Release**
 - No. of Zoospores – Microscopy
 - Root-infection – Plant bio-assay
 - Pathogen concentration – qPCR analysis

- **Zoospore Chemotaxis**
 - Attraction/Repulsion – Microscopy

- **Root exudates chemical composition**
 - Analytical chemistry techniques e.g. liquid chromatography, mass spectrometry
Preliminary Results
Zoospore Release – Root Exudates

Zoospore Release

Zoospores

0 20 40 60 80 100 120

Water
Agria
Gladiator
Iwa

5 DAI 7 DAI 9 DAI

*DAI – Days after incubation

12
Zoospore Release....Continued

Zoospore Release

Days after incubation

Root Infection

Root Hair Infection
Zoospore Release

Days after incubation

Zoospores

- Water
- Iwa
- Pea
- Gladiator
- Tomato

0 4 7 10 14 17 28
Zoospore Release....Continued

Zoospore Release

Days after incubation

Days after incubation

Zoospores

Types of Apples:
- Coliban
- RRusset
- Shepody
- Iwa
- Gladiator
- Agria
- Water
Kole, 1953

Balendres, Tegg, and Wilson, 2014
Where to From Here?

- Evaluate the effect of root exudates on zoospore chemotaxis
- Identify chemicals in root exudates
Objective 3

- Quantify yield loss in glasshouse and field under Tasmanian conditions
“When all stakeholders involved in the potato business become aware that solution of powdery scab problems is likely to be a long term goal, when a range of resistant cultivars are available and when powdery scab risk can be accurately predicted for seed tuber lines and for fields, then the mission to find effective control of this important disease will become accomplishable.

Merz and Falloon (2009)
Thank You!

The Team
Dr. Calum Wilson
Dr. Robert Tegg
Dr. David Nichols
Ms. Annabel Wilson
Mr. Tamil Thangavel

Big Thanks to
Prof. Richard Falloon – Bio-Protection Research Centre, NZ
Dr. Ueli Merz – ETH Zurich, Switzerland
Dr. Tony Conner – agresearch New Zealand
Dr. Alieta Eyles – TIA, UTAS